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A cloud of solute injected into a pipe or channel is known to spread out by a dispersion 
process based on cross-sectional diffusion across a velocity shear. The original 
description of the process is due to  Taylor (1953, 1954), and an important subsequent 
contribution was by Aris (1956), who framed and partially solved equations for the 
integral moments of the cloud of contaminant. The present work resolves some 
technical difficulties that occur when Aris’ solution method (separation of variables) 
is pursued in depth. In  particular, it is shown that Aris’ technique has to be modified 
to give the moments a t  short and moderate times after the injection of solute into 
the flow. The paper is concerned with dispersion in those parallel flows for which an 
associated eigenvalue problem has a discrete spectrum of eigenvalues ; fortunately, 
this case appears to be the rule rather than the exception. Expressions are obtained 
for the second and third moment about the mean, and the theory is applied to three 
cases of interest. 

1. Introduction 
The dispersion of soluble matter in fluid flow has been intensively researched since 

the classic papers on the subject by G. I. Taylor (1953,1954). Taylor pointed out that 
solute is much more slowly dispersed by molecular or turbulent diffusion alone than 
by the process of molecular or turbulent diffusion across a velocity shear. This 
dispersion process has a wide application in chemical engineering and chromatography 
(see e.g. Marrero & Mason 1972; Howard 1976), environmental fluid mechanics (see 
e.g. Fischer et al. 1979) and other fields. 

A complete mathematical description of the dispersion process is seldom possible, 
however, and approximation methods are invariably employed : for example, expan- 
sions that are valid for small (Barton 1978; Smith 1981) or large (Chatwin 1970) 
values of the time are available. Another fruitful approach is that developed by Aris 
(1956), namely the calculation of the first few integral moments of a cloud of solute 
as i t  disperses. The mean of the distribution and the second moment about the mean 
are particularly useful. It is now well known that a cloud of contaminant injected 
into a tube or channel develops a Gaussian profile in the downstream direction a t  
asymptotically large times. Thus the dispersion process is asymptotically equivalent 
to a diffusion process, except that the apparent diffusion coefficient is much larger 
than ordinary molecular or turbulent diffusivities. The apparent diffusion coefficient 
may be readily calculated once the asymptotic form of the second moment about the 
mean is known: for example, Aris (1956) showed from the second moment that the 
dispersion coefficient is K + a2U2/48~ for a solute with molecular diffusivity K injected 
into a tube of radius a containing fluid in laminar flow with mean speed U .  The 
moments of a cloud of solute are easier to calculate than the concentration of the 
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distribution itself, and Aris’ techniques are therefore important and useful in many 
applications. 

The aim of this paper is to resolve technical difficulties that occur when solving 
Aris’ moment equations by separation of variables. Aris (1956, 1959) did not deal 
with these problems in his papers because he was concerned only with the asymptotic 
behaviour of the second moment about the mean; the problems occur when 
separation of variables is used to solve for the moments a t  all times after the injection 
of contaminant. The Aris moment equations consist of a parabolic partial differential 
equation giving the time-dependent cross-sectional structure and an ordinary 
differential equation for the evolution of cross-sectionally averaged moments. Some 
complete solutions of these equations are already available for particular cases (e.g. 
Chatwin 1970). The present work is more general, however, as it gives solutions a t  
all times for the second and third moments of a cloud of solute injected into a parallel 
flow. The calculations presented for the third moment are restricted to the case when 
the injected solute is initially uniform across the cross-section. The solutions are also 
subject to the proviso that an eigenvalue problem that occurs in the separable 
solution possesses a discrete spectrum of eigenvalues. This proviso may be important 
for models of dispersion in parallel flows when the diffusion coefficient vanishes a t  
the boundaries, although, even in these cases, the proviso does not automatically 
present a hindrance, as is shown in $6. 

The contents of this paper are as follows. I n  $2, a summary is given of the Aris 
method of moments, and solutions for the second and third moments are obtained 
in $3.  Then in $94-6 the results are applied to three cases of some interest: dispersion 
of a solute with constant molecular diffusivity in plane Coutte flow and in Poiseuille 
flow, and dispersion in turbulent channel flow. The calculations for these three 
examples are simplified by assuming that the initial distribution of contaminant is 
uniform across the cross-section of the flow. The conclusions of the work are gathered 
together in $7. The most important of these is that Ark’ results are correct a t  
asymptotically large times, although his work could not describe the approach to the 
asymptotic state without the modifications contained herein. 

2. The Aris moment equations 
A summary of Aris’ (1956) method of moments for a dispersing solute is given in 

this section. We consider a confined parallel flow in the direction of the axis Ox* of 
Cartesian coordinates Ox*y*z*. (An asterisk in this section denotes a dimensional 
constant or variable.) Define R* to be the cross-section of the flow in the Oy*z* plane, 
and let IR*l be its area and aR* its boundary. Further, suppose the flow has velo- 
city components (u*(y*, z * ) ,  0 ,  0) and that a solute with diffusivity K * ( Y * ,  z*)  is in- 
jected into the flow. The diffusive flux of contaminant is given by - K*V*C*, where 
C*(x*, y* ,  z*, t*)  is the concentration. 

It is convenient to  work with dimensionless variables {x, y ,  z ,  t ,  u, K ,  c) dcfined 

[x*, y*> z*l = a*[x,  y ,  21, 

t* = a*%/D*, u* = U*u, 

K* = D*K, C* = Q*C/a*%2, 

( 2 . l a )  

(2.1 b ,  c )  

( 2 . l d , e )  

where D* and U* are the mean values of K* and u* over a*, a* is a characteristic 
scale of R*, Q* is the total amount of injected contaminant, and R is the dimensionless 
cross-sectional area of the flow. The factor R is included in the non-dimensionalization 
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of C* for convenience, and the definition ensures that SSjCd V = l2. The dimensionless 
variables K and u have unit cross-sectional mean, that is 

The concentration C then satisfies the equation 

under the conditions 

KVC.A=O a t d o ,  (2.3a) 

a m c  
axm 

xn--+O as(x(+co  ( m , n = 0 , 1 , 2  ,... ). 

(2.3b) 

( 2 . 3 ~ )  

(2.3d) 

(2.3e) 

In  (2.1), p = U*a*/D* is the PBclet number of the flow, and, in (2.3), A is the unit 
normal to the boundary aQ of the flow. The coordinates Oxyz used in this work are 
stationary, whereas those used by Aris (1956) and Chatwin (1970) were moving with 
the discharge speed of the flow. 

If the following moment definitions are now made, 

(2.4b) 

Aris has shown that C, and M ,  are the solutions of the problems 

?$-&(J?$)-&(K%) = n(n -1 )  KC,-,+nPuC,-l, (2.5a) 

(2.5b) 

( 2 . 5 ~ )  

C, finite over the cross-section, (2 .5d)  

and -- dMn - n(n-1) KC,-,+nPuC,-,, 
dt 

( 2 . 6 ~ )  

M,(O) = G?, = A,. (2.6b) 

As previously, the overbar denotes the cross-sectional mean. The problems (2.5) and 
(2.6) are as defined by Aris, apart from minor changes of notation, the use of 
stationary coordinates and the explicit statement of the condition (2.5d). Aris has 
pointed out that  the problems (2.5) and (2.6) can, in principle, be solved to as high 
a degree of accuracy as desired, and he was concerned with the asymptotic behaviour 
of M,(t). The parabolic partial differential equation ( 2 . 5 ~ )  can be solved by a variety 
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of means: for example, by Laplace transform (Chatwin 1970) or by separation of 
variables (Aris 1956). The main thrust of the present paper is to obtain a solution 
€or Mo,  ..., M3 using separation of variables, and, in doing so, to remedy errors 
implicit in Aris’ formulation. 

For later reference, the moments about the mean are also introduced a t  this point. 

They are defined by JJJ(x-z)nCdv 

JSJCdV ’ 
Vn(t) = 

where 

M2 u 2 ( t )  = --2’ 
MO 

and simple manipulations yield 

( 2 . 7 )  

3. Solution of the moment equations by separation of variables 
For n = 0, we look for a solution to (2.5) in the separable form 

C, = Aoo+CAoifie-Pft, (3 .1)  
i 

where the eigenvalue problem 

( 3 . 2 ~ )  

Kvf, . A  = 0 a t  dR, f i  finite (3 .2b)  

and corresponding is assumed to possess a discrete set of eigenvalues 
eigenfunctions { fi}y- that are orthogonal and normalized so that 

1 & = o ,  a={ 0 (i *j). 
1 (i =j), 

(3.3) 

The eigenfunctions { fi)y- augmented by the constant 1 (with eigenvalue 0) form a 
complete set, and fitting the initial conditions Co(y, z, 0) = Vo(y, z )  fixes the constants 
A,, and Aoi to be 

Noting that do = go = 1 by (2 .3c) ,  the solutions for Mo and C, are 

(3.4) A,, = V,, Aoi = m. 

MOP) = 1 ,  (3.5a) 

Co(t)  = 1 + C q  f i e - F i t .  (3 .5b)  

The solution for M I  now follows readily by substituting for C, in (2 .6) .  Without 

i 

loss of generality, MI is set equal to zero, and Ml(t) is found to be 
-_ 

M l ( t )  = Pt + P C Vo f i  uji ( 1  - e-fift)/pi. 
i 

The term Pt reflects the well-known fact that  the centre of mass ultimately moves 
a t  the discharge speed U*, and the remaining terms give a small displacement 
relative to  the original centre of mass. 
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The solution for C, is more complicated, however, and i t  is here that Aris’ 
formulation would break down if expressions for the moments were required for other 
than asymptotically large times. The problem defining C, is 

(3 .7a)  
ac, a 
at ay ( K%) -$ (~2) = pu + P x m ufi e - p i t ,  

i 

C,(y,  z ,  0 )  = Y ( y ,  x ) ,  KVC,. A = 0 a t  aR, C, finite, (3 .7b ,c ,d)  

and, for reasons that are explained immediately below, the inhomogeneous terms in 
the defining equation are modified by adding in and subtracting out various terms 
as follows: 

PU + P z m ufi e-pit  = P ( u  - ylo) + P X (u -ylz) f i  e-pit  
i i 

+ Pylo + P X yli f i  e - p i t .  
i 

The solution for C, is therefore 

C1 = A10 + X Ali f i  e -p i t  + P$lo + P X m $li e-pgt + Ptyl0 + Pt m y Y l i  f i  e - p i t ,  
i i i 

where the particular solutions $lo and $li are the solutions of the problems 

KV$,, . A = 0 at asZ, finite, (3.86, c )  

and (3 .9a)  

KV& . A  = 0 at aR, $li finite. (3.96, c )  

Now it  is well known from eigenvalue theory that inhomogeneous problems such as 
(3 .8)  and (3 .9)  possess a solution only if the inhomogeneous term is orthogonal to the 
eigenfunction of the homogeneous problem. This solvability condition (which was 
ignored by Aris for the equivalent of (3 .9) )  immediately determines the constants ylo 

- 
(3.10) 

and ylz to be 
710 = 1 ,  Yli  = U f i f i .  

The introduction of the constants ylo and yli is essential to obtain the separable 
solution. Moreover, the solutions and #li can be expressed as a linear combination 
of the complete set of eigenfunctions (1 ,  {ji}F- That is, 

$10 = P i 0  + P i j f j ,  4li = Pi0 + X P l j f j ,  (3.11) 

where the /3s are determined by expanding the inhomogeneous terms in (3 .8)  and (3 .9)  
in terms of the eigenfunctions. It is found that PAo and pii are arbitrary (and are 
hereinafter set equal to zero), and the other ps are given by 

i 3 

(3.12a, 6 )  

( 3 . 1 2 ~ )  

The solution of C, is completed by using the initial condition C,(y,  z ,  0) = %‘,(y, z )  
to determine the arbitrary constants A,, and Ali  multiplying the complementary 
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functions. This procedure is straightforward and, after some algebra, the final 
solution for C, is found to be 

The solution for M2 may be obtained by substituting the expressions (3.5) and (3.13) 
for C, and C, into (2.6) and integrating. Omitting the lengthy details, M ,  is finally 
found to be 

M2( t )  = k2 + 2{ 1 + P2 Z uf3 /,u$ + 2 P t  Z =$/pi + Pt2 
i i 

- 2 P  E uf9 (1  - e - p i t ) / , a f  + 2 X m m  (1 - e - p i t ) / p i  

+ 2P Z ‘3, f i  ufi (1  - e - p i t ) / p i  - 2 P t  X q0 f i  ufi ufi f i  e -p i t / ,u i  

+ 2 P Z  W0 f i u f i ( u - l ) f i  f i ( l - e ” i t ) / p f  

i i 
__-__ __- 

i i 
~- 

i 

(3.14) 

This expression for M ,  enables v2(t)  defined by (2 .7)  to be calculated. After 
simplification, v2( t )  is found to be 

-- 
- 2 P t x  q0 f i ( U - l ) f i f i U f i e - p i t / P i - ~ ( x  q0 f i u f i ( l - e - p i t ) / , u i ) 2  (3.15) 

and, in the important case when the initial cloud of contaminant is uniform across 
the cross-section, this reduces to 

v2( t )  = A , + ~ { ~ + P c U ~ , / P ~ } ~ - ~ P ~ C  uf4 ( 1 - e - p i t ) / , u ; .  

i i 

(3.16) 

The moment C2(y, z, t )  has to be found in order to calculate M3(t )  and v3(t) ,  and 
the analysis becomes very laborious at this point. For this exposition, it suffices to 
remark that inhomogeneous terms have to  be added in and taken out of the defining 
equation for C, to satisfy solvability conditions. The particular solutions are then 
sought as a linear combination of the complete set { 1, { f i } T -  &, and arbitrary constants 
are determined by fitting the initial condition C,(y, z ,  0) = g2(y, z ) .  Finally M ,  is found 
by substituting for C, and G, in (2.6) (with n = 2 )  and integrating. The resulting 
expression for M ,  is too long and complicated to reproduce here; rather the 
simplification that the initial cloud of contaminant is uniform across the channel is 
made for the presentation of results. I n  this case, the third moment about the mean 

i i 
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is eventually found to be 
- 

v3 ( t  ) = A? + 6Pt C (2  ref, + P2 C ufi ( u - 1 ) f i  f i/p1) 
i Pi 1 

- j + i  

U p  +6P3 C. ( u - l ) f i f i + t e - p i t .  (3.17) 
i Pi 

4. Dispersion in plane Couette flow 
As a simple introductory example, we consider the dispersion of a solute with 

constant molecular diffusivity injected uniformly over the cross-section into plane 
Couette flow. I n  this case, K and u are given by K = 1 ,  u ( y )  = 2y (0 6 y 6 l) ,  and 
the eigenvalue problem (3.2) becomes 

- df  = o  a t y = 0 , 1  
dY 

(4.1 a )  

(4.1 b )  

The eigenvalues and corresponding normalized eigenvalues for this problem are 
therefore 

pi = (in)2,  f i ( y )  = 4 2  cos iny  ( i  = 1 , 2 , .  . .), 

and it is an easy matter to derive the results 

( -  1)i-j-  1 

( i  -j)z 
+ 

which are required to calculate v2(t)  and v3(t) .  If the various series in (3.16) and (3.17) 
are summed t o  8 terms on a small calculator, v2( t )  and v3(t)  are found to  be 

3 (4 .2a)  P2 ) t  I 64P2 1 e-(2i-1)2nzt 

14823529 ns i-1 (2 i -  1 ) s  
V 2 ( t )  = 4,- 

u3( t )  = A3. (4.2 b) 

A simple check on the present theory is afforded by confirming that these 
expressions agree a t  large times with results predicted by Chatwin’s asymptotic 
theory (1970, equations (3 .8) ,  (3 .9) ) .  The asymptotic theory predicts for v 2  and u3 

?f92(t) - A 2 - & p z + 2 ( 1  + & p z ) t ,  

V 3 ( t )  - A 3 ,  

and the agreements of the constants is excellent. 
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5. Dispersion in Poiseuille flow 
This section considers the important case of a solute with constant molecular 

diffusivity injected uniformly across the cross-section into Poiseuille flow in a tube. 
The variables K and u are now given by 

K =  1, u(p)=2(1-p2) ( O < p <  l),  (5.1) 

where p is the usual cylindrical polar coordinate. (The assumption that $$ is uniform 
across the cross-section means that the analysis is independent of the other polar 
coordinate q5.) The eigenvalue problem (3.2) now becomes 

_ -  'fi - 0 at p = I ,  fi finite, (5.26, c) 
dP 

and the corresponding eigenvalues and normalized eigenfunctions for this problem 
are 

(5.3) 

Here Jo is the Bessel function of order 0, 
is the weight function in the orthogonality property 

are the roots of JA = - J l ,  and p 

Some standard properties of Bessel functions can then be used to  establish the results 

8 - 
uf. = -- 

a;' 
~ 

uf. f.  = 4 a a 37 

and the task of summing various infinite series in (3.16) and (3.17) is simplified by 
using the following remarkable results due to  Rayleigh (see Watson 1966, § 15.51) : 

m 1 2  3 4 5 6 

00 1 1  1 1 13 11 z q 2 m  - 
i-1 8 192 3072 46oo80 8847360 110100480 

The expressions (3.16) and (3.17) then become 

v2(t)  = A2-&P+2(1  +&P)t+ 128P ;I: aI8e-a; t ,  

v3( t )  = jkl,+&P(t-&)+128P3 x ail2 (ta~+18af-240)e-a~t. 

(5.4) 

(5.5) 

i 

i 

These results are in agreement with those obtained by Chatwin (1970, eqns (4.9), 
(4.10)) using Laplace transforms, with the exception of the term 

128P3t x a;8e-aft 
i 
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, Chatwin’s result. The initial cloud of 
FIGURE 1. A comparison of u 3 ( t ) - A 3  for Poiseiiille flow predicted by the present theory with 
Chatwin’s (1970) result: -, present theory; - - - - - 
contaminant is uniform across the cross-section, and the variables are non-dimensionalized as in 
the text. 

-0.0005 

in vg( t ) .  A close examination of appendix C of Chatwin’s paper shows that this series 
results from neglected double zeros in a Laplace-transform inversion, and a 
comparison between the correct result (5.5) and Chatwin’s result is shown in figure 
1. To complete this section, i t  is noted that integral moments have been used by 
Andersson & Berglin (1981) to estimate diffusion coefficients from experiments in 
which solutes are dispersed in Poiseuille flow. 

6. Dispersion in turbulent channel flow 
Consider now, as a final application of the theory, the dispersion of a solute in 

turbulent channel flow. This subject has been studied by Elder (1959) and Chatwin 
(1970), who mentions that numerical solutions for the moments v, and v3 have been 
given by W. W. Sayre (whose work is not readily accessible). Following Fischer et 
al. (1979, $4.2) the variables K and u are given by 

(6.1) 
U* 

K(Y) = 6Y(l--Y), U(Y) = 1 + U * K  ( l + l n y )  (0 < y < I ) ,  

in which u* is the friction velocity, U* is the discharge speed of the flow and K is 
von Karman’s constant, which is approximately 0.42. As Chatwin (1970) points out, 
there are severe faults with the representations (6.1) : there is no firm justification 
for the use of Reynolds’ analogy, which gives K ( y )  (but see Fischer et al. 1979, 
$5.1.1.1), the form for u ( y )  neglects the important viscous sublayer (see Chatwin 
1973), and turbulent flow in a channel is not two-dimensional. The theory also 
predicts results that  differ by orders of magnitude from results in natural streams 
and watercourses (see Fischer et al. 1979, $5.2.1). In spite of these remarks, dispersion 
in turbulent flow in a channel is important, certainly for pedagogic reasons, and it 
is therefore included here. 
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f,(Y) = d3(- 1 +2Y) 
f*(Y) = d S ( 1  -6Y+6YZ) 
f3(y) = d7(- l+12y-30y2+20y3)  
f4(y) = 3 - 6 0 ~  + 2 7 0 ~ ’  - 4 2 0 ~ ~  + 2 1 0 ~ ~  
f5(y) = 2/11(-1+30y-210y2+560~3-630y4+252y5) 

f,(y) = dI5(-1 +.56y-756y2+4200y3-11R50y4+ 16632~‘- 12012y6+3432y’) 
fs(y) = ~ ‘ 1 7 ( 1 - 7 2 ~ +  126Oy2-9240y3+34650y4-72072y5+84O84y6-5148O~’ + 1 2 8 7 0 ~ ~ )  
f,(y) = d l 9 (  - 1  +90y-1980y2+ 18480y3-90090~4+252252y5-420420y6+41 1840y7-218790ys+48620y9) 

fa@) = d13( 1 - 42y+ 420~’-  1680y3 + 3150y4 - 2 7 7 % ~ ~  + 924y6) 

TABLE 1 ,  The eigenfunctions f,(y) (i = 1, . . ., 9) for dispersion in turbulent 
flow in the channel 0 < y < 1 

i 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

at 

-037268 
086603 

0.22048 

0.1 1055 

0.069 16 

004843 

- 0  15000 

- 0.085 85 

-0.05727 

- 0041 66 

i 

11 
12 
13 
14 
15 
16 
17 
18 
19 

ai 
0036 33 

0.02855 
- 0.025 64 

0.023 20 
-0021 12 

001933 
-001779 

001644 

-003205 

TABLE 2. Values of the constants ai =fi(y) 1n y 

The eigenvalue problem (3.2) now becomes 

with df i 
dY 

6 y ( l - y ) - = 0  a t  y = O , 1 ,  

fi,fi finite at y = 0, 1, (6.4) which is equivalent to 

The problem specified by (6.2) and (6.4) is a singular Sturm-Liouville problem, and 
standard theory (see e.g. Boyce & Di Prima 1977) no longer guarantees that a discrete 
spectrum of eigenvalues exists. .In the present case, however, there i s  a discrete 
spectrum, and the results developed in $3  still apply. 

To show this, we make the substitution f ;  = 2y- 1, and (6.2) becomes Legendre’s 
equation 

The only solutions of Legendre’s equation that are finite a t  f; = & 1 (and hence satisfy 
(6.4)) are the Legendre polynomials Pn(c), and it  merely remains to normalize these 
polynomials to satisfy the property fifi = 1 .  A computer program was written that 
generated the Legendre polynomials Pn(f;), sorted them into polynomials in y, and 
normalized them as in (3.3). The eigenfunctionsfi(y) are displayed in table 1, and 
the various integrals f i ( y )  In y and f i (y ) f j (y)  In y that  are required for the applica- 
tion of the theory are given in tables 2 and 3. The eigenvalue corresponding tof&) 
is pi = 6i( i+ 1) .  
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To present the results, the constant P(u*/U*K) is first evaluated, 

U*h* u* U*h* u* 6 - P ( U * / u * K )  = ___- - D* U*K &cu*h*U*K K ~ ’  

and the expressions (3.16) and (3.17) for v z ( t )  and v 3 ( t )  are then found to give 

0.3835 
v,(t) = A2-- 

K4 

(1  - e-pzt) V 3 ( t )  = A 3 + t  _-__ +--- 1 4.681) 0.6265 1 
( 3 K 2  K6 K~ 1 0 8 ~ ~  

Here pi, ai and c i j  are given by 

and ai and cij are tabulated. The asymptotic forms of these expressions agree well 
with the asymptotic forms quoted by Chatwin (1970, pp. 34&342), although there 
is a disagreement of about 5 % in the coefficient of t/K6 in v3(t) .  The numerical work 
for this section was carried out in double-precision arithmetic on a PDP 11/34 
computer, with 20 terms retained in the various series ; numerical accuracy to  3 figures 
should be assured. The results should be more accurate than those of Chatwin (1970). 
The expressions v2 - A2 and v3 - A3 are displayed in figure 2 with K set equal to 0.42. 

7. Discussion 
The Aris method of moments is probably most useful in calculating the asymptotic 

form of the second moment about the mean of a dispersing cloud of solute. Such an 
expression provides the apparent diffusion coefficient for the dispersion process. I n  
this respect, the errors implicit in Aris’ (1956) paper are not important because they 
do not affect the leading asymptotic behaviour of v2( t ) .  The solvability condition for 
(3.8) (which governs the asymptotic behaviour) is automatically satisfied provided 
the dispersion is described using coordinates moving with the mean speed of the flow. 
Thus Aris’ results are adequate to  give the asymptotic structure of vz ( t )  and v3( t ) ,  and 
his results are supported by the asymptotic results of Chatwin (1970). 

The main result of the present paper is that  expressions for v 2 ( t )  and v 3 ( t )  can be 
obtained using separation of variables, provided that due care is taken of solvability 
conditions in related eigenvalue problems. The new results are important if expressions 
for the moments are required a t  short or moderate times, or if information is required 
about the distribution of contaminant across the cross-section. It is found that the 
third moment is the highest obtainable with manageable labour and reasonable 
confidence in its accuracy. Fortunately, as Anderson & Berglin (1981) remark, this 
may often be sufficient even for use with accurate experiments. 

The theory presented here should be capable of generalization to handle dispersion 
under different boundary conditions and in two-phase flows. The only requirements 
would be that a separable solution should exist and that the eigenvalue problem 
analogous to (3.2) should possess a discrete spectrum. The effect of changed boundary 
conditions might be particularly important : for example, there could be (possibly 
catalysed) reactions at the boundary (Barton 1982), or there could be a slow flux of 



Method of moments for solute dispersion 217 

t 

t 

FIGURE 2. Graphsof u2( t )  - Az and u 3 ( t )  -Aa for dispersion in turbulent channel flow. The initial cloud 
of contaminant is uniform across the cross-section, and the variables are non-dimensionalized as 
in the text. 
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contaminant through the boundary. I n  these situations, the centre of mass of the 
contaminant cloud no longer moves a t  the discharge speed of the flow, and the 
solvability conditions are immediately required to determine the speed of the centre 
of mass and the apparent diffusion coefficient a t  large times. An analysis of this sort 
might find application to the situation described by Valentine & Wood (1977), where 
‘dead zones’ at the edges of natural watercourses trap and then slowly release 
contaminant back into the flow. 

Finally, when does (3.2) possess a discrete spectrum of eigenvalues? Standard 
eigenvalue theory (e.g. Boyce & Di Prima 1977) guarantees that a discrete spectrum 
exists if the problem is of normal Sturm-Liouville type - that  is, if K ( y ,  z )  > 0, if the 
cross-section is of finiti? extent, and if the boundary condition is of the form 

af$+PVfi.A = 0. (7 .1)  

Thcsc conditions are automatically satisfied in the dispersion of a contaminant with 
constant molecular diffusivity in a laminar parallel flow through a finite cross-section. 
The conditions arc not satisfied when modelling turbulent dispersion in a channel, 
as the eddy-diffusion coefficient vanishes a t  the boundaries. However, in the simple 
case analysed, a discrete spectrum did exist and the theory of $ 3  was applicable. It 
is conjectured that a discrete spectrum would still exist for this problem if the 
boundary conditions were changed from (6.3) and (6.4) to the form (7.1).  
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